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ABSTRACT

Offline reinforcement learning (RL) offers a promising framework for training agents using pre-
collected datasets without the need for further environment interaction. However, policies trained
on offline data often struggle to generalise due to limited exposure to diverse states.The complexity
of visual data introduces additional challenges such as noise, distractions, and spurious correlations,
which can misguide the policy and increase the risk of overfitting if the training data is not suffi-
ciently diverse. Indeed, this makes it challenging to leverage vision-based offline data in training
robust agents that can generalize to unseen environments. To solve this problem, we propose a sim-
ple approach—generating additional synthetic training data. We propose a two-step process, first
augmenting the originally collected offline data to improve zero-shot generalization by introducing
diversity, then using a diffusion model to generate additional data in latent space. We test our method
across both continuous action spaces (Visual D4RL) and discrete action spaces (Procgen), demon-
strating that it significantly improves generalization without requiring any algorithmic changes to
existing model-free offline RL methods. We show that our method not only increases the diversity
of the training data but also significantly reduces the generalization gap at test time while maintain-
ing computational efficiency. We believe this approach could fuel additional progress in generating
synthetic data to train more general agents in the future.

1 INTRODUCTION

Offline reinforcement learning (RL) offers a compelling approach for training agents using pre-collected datasets with-
out additional environment interaction (Levine et al., 2020). This paradigm is particularly valuable in domains like
healthcare (Liu et al., 2020), robotics (Singla et al., 2021), and autonomous driving (Kiran et al., 2021), where real-
time data collection can be costly or risky. However, generalizing policies trained on high-dimensional visual inputs
in offline RL remains a significant challenge, and it has received relatively little attention in the research community.
Agents may learn irrelevant correlations between visual features and actions, reducing their ability to perform well
in new settings (Song et al., 2019; Raileanu & Fergus, 2021). Additionally, offline RL policies tend to exhibit risk-
averse behavior, avoiding novel actions in unfamiliar states, which further hampers generalization (Mediratta et al.,
2024). To tackle these challenges, we propose a two-step method that combines data augmentation with diffusion
model-based upsampling to improve generalization in offline RL. While both data augmentation (Laskin et al., 2020;
Yarats et al., 2021a;b; Raileanu et al., 2021) and the use of diffusion models for replay buffer upsampling (Lu et al.,
2023b) have been explored independently in the online RL domain, our contribution lies in their integration and adap-
tation for the unique challenges of offline RL to achieve greater diversity and more robust generalization. First, we
apply data augmentation techniques to the offline dataset, introducing variability that helps reduce overfitting. Then,
we use a diffusion model to upsample the augmented dataset in the latent space, generating additional synthetic data
points that capture unseen transitions. This approach broadens the distribution of experience replay data without in-
curring significant computational overhead, allowing policies to generalize more effectively to new environments.Our
results demonstrate that our method significantly reduces the generalization gap across various difficulty levels in two
recent visual offline RL benchmarks, highlighting the effectiveness of combining augmentation and diffusion-based
upsampling.

To summarize, out contributions are:

1
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Figure 1: V-D4RL (continuous) and Procgen (discrete) benchmarks illustrate the generalization challenge in offline
RL by showcasing visual differences between training and testing environments (a). Jensen-Shannon divergence
heatmaps demonstrate how well each method aligns training and testing distributions, with our two-stage approach
outperforming the data upsampling, and augmentation methods; darker colors indicate higher divergence (b). The
performance of each method in unseen environments, normalized to the baseline, consistently shows our approach
performing best with reduced variability across runs (c). For detailed analysis, refer to Section 5 for details.

• We introduce a practical method that integrates data augmentation and diffusion-based upsampling to improve
generalization in offline RL from visual inputs, without requiring modifications to existing model-free offline
RL algorithms.

• We show our approach expand data diversity without increasing computational costs, improving zero-shot
generalization across both continuous and discrete control tasks.

• To the best of our knowledge, we are the first to propose a practical, scalable method that addresses general-
ization in both continuous (V-D4RL) and discrete (Procgen) control tasks within offline RL.

2 BACKGROUND

2.1 OFFLINE REINFORCEMENT LEARNING FROM VISUAL OBSERVATIONS

Reinforcement Learning (RL) typically involves an agent learning by interacting with an environment modeled as a
Markov Decision Process (MDP) (Sutton & Barto, 2018), where the objective is to optimize the expected cumulative
return J(π) = Eπ,P,ρ0 [

∑∞
t=0 γ

tR(st, at)], where J(π) represents the expected return of a policy π, Eπ,P,ρ0 is the
expectation over the policy π, the environment dynamics P (s′|s, a), and the initial state distribution ρ0. The term
γ ∈ [0, 1) is the discount factor, controlling how much future rewards are valued, and R(st, at) is the reward function
at time step t, depending on the state st and action at. The goal is to find a policy π that maximizes this cumulative
discounted return over time.

In offline RL, however, the agent must learn from a static dataset D = {(oi, ai, ri, o′i)}Ni=1, without any interaction
with the environment during training (Levine et al., 2020). This dataset typically consists of observations collected by
one or more behavior policies. When dealing with visual observations (high-dimensional inputs), additional challenges
arise.Unlike proprioceptive observations in standard RL, visual inputs are prone to noise and spurious correlations (Lu
et al., 2023a), making offline RL particularly vulnerable to overfitting. Small environmental changes (e.g., lighting
or backgrounds) can cause significant shifts in data distribution. Without interaction to correct for these shifts, agents
struggle to generalize from visual observations (Raileanu & Fergus, 2021). Given these challenges, the core problem
is: How can we improve the generalization performance of model-free offline RL methods from visual observations
and ensure the robust deployment of agents in unseen environments for both continuous and discrete action spaces?

2
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2.2 DIFFUSION MODELS

Diffusion models generate data by reversing a noise-adding process, starting from noise and gradually denoising to
recover the original data distribution (Ho et al., 2020; Rombach et al., 2022). The noise removal is guided by a learned
denoising model Dθ(x;σ), trained using an L2 objective:

min
θ

Ex∼p,σ,ϵ∼N (0,σ2I)∥Dθ(x+ ϵ;σ)− x∥22. (1)

This allows the model to estimate the data distribution at different noise levels. Additional details, including the use
of ODEs or SDEs for the reverse process, can be found in Karras et al. (2022). Diffusion models have shown supe-
rior performance in generating diverse synthetic datasets compared to Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs), making them particularly effective for improving generalization in reinforcement
learning Lu et al. (2023b). This is why we chose diffusion models, as their ability to generate diverse data makes them
ideal for our approach.

3 METHOD

3.1 OVERVIEW OF THE PROPOSED METHOD

To address the generalization challenges of offline RL from visual observations, we present a simple, practical ap-
proach that combines data augmentation and diffusion model-based upsampling.

1. Data Augmentation to Increase Initial Dataset Diversity: We apply specific data augmentation techniques
to the offline datasets to invrease

:::::::
increase the diversity of the initial dataset D0. This step aims to introduce

variability and reduce overfitting to spurious correlations in visual inputs.
2. Upsampling with Diffusion Models: We employ diffusion models to upsample

:::::
model

:::
to

:::::::::
upsample

::::::::
(SynthER

::::::::::::::
(Lu et al., 2023b)

:
) the augmented dataset D0, generating additional synthetic samples in the latent

space. This further increases dataset diversity and helps the policy generalize better to unseen environments.

By integrating data augmentation with diffusion model-based upsampling, our method effectively covers a wider range
of potential scenarios without significantly increasing computational overhead.

3.2 STEP 1: DATA AUGMENTATION FOR INITIAL DATASET DIVERSITY ENCHANCEMENT

To construct an initial dataset D0 that captures key environment dynamics, we apply a set of data augmentation
techniques to improve robustness to variations in visual inputs. Specifically, we focus on rotation, color jittering, color
cutout, and background image overlay, which were empirically found to improve generalization. These augmentations
introduce variations that prevent the agent from learning spurious correlations in the visual inputs. However, we
believe that data augmentation alone may not fully capture the diversity of real-world scenarios, particularly in unseen
environments, making it necessary to complement this with synthetic data generation through diffusion models, which
has proven to improve diversity even more effectively than augmentation techniques (Lu et al., 2023b). Full details for
this part are given in supplementary material.

3.3 LATENT SPACE UPSAMPLING WITH DIFFUSION MODELS

We first train an encoder-based model-free visual offline RL algorithm on the augmented dataset D0, using the selected
image augmentation techniques described in Section 3.2. For the V-D4RL benchmark, we use the DrQ+BC algorithm
(Lu et al., 2023a), while CQL is employed for the Procgen benchmark (Kumar et al., 2020). In both cases, the networks
consist of a CNN encoder fξ, policy network πϕ, and Q-function networks Qθ. This initial training enables the model
to learn robust representations from diverse visual inputs, tailored to the specific requirements of each environment.

After the initial training, we extract latent space parameters from the augmented dataset by passing the augmented
observations through the trained encoder fξ and the linear head layers, which sit between the encoder and the MLPs
of the policy and Q-function networks. For each transition (s, a, r, s′) in D0, the following computations are made:

h = fξ(Augment(s)), h′ = fξ(Augment(s′)) (2)

zπ = πlin
ϕ (h), z′π = πlin

ϕ (h′) (3)

zQ = Qlin
θ (h), z′Q = Qlin

θ (h′) (4)

3
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where πlin
ϕ and Qlin

θ denote the linear head layers of the policy and Q-function networks.

We combine the latent representations to construct the latent transitions:

z = zπ + zQ, z′ = z′π + z′Q (5)

resulting in the latent dataset Dlatent = {(z, a, r, z′)}, which is used to train the diffusion model Mdiff. Following
Lu et al. (2023b) and Karras et al. (2022), the diffusion model generates synthetic latent transitions (zd, ad, rd, z

′
d),

producing the upsampled dataset Ddiff.

Finally, we combine the original and upsampled datasets to create an expanded dataset:

Dups = Dlatent ∪ Ddiff (6)

The encoder fξ and the linear head layers of the policy and Q-functions are frozen during fine-tuning, allowing the
training to focus on refining the MLP layers of the policy and value networks using the diverse data provided by Dups.
This ensures stable representations while improving the model’s ability to generalize to unseen environments with
minimal computational overhead. Our empirical approach, which combines data augmentation with synthetic data
generation through upsampling in the latent space, significantly increases dataset diversity, as demonstrated in our
results (Section 5). Figure 2 illustrates the architecture of our method, built on the DrQ+BC model.

Figure 2: Illustration of our method in the V-D4RL benchmark using the DrQ+BC network. Green arrows indicate
data augmentation, while blue and orange arrows represent the training flows for the actor and critic networks, respec-
tively. The red components highlight the diffusion model upsampling process, which generates additional latent space
transitions to increase the dataset diversity.

4 EXPERIMENTAL SETUP

4.1 ENVIRONMENTS AND DATASETS

We evaluated our method on two challenging offline RL benchmarks that test generalization capabilities in different
domains:

• Visual D4RL (V-D4RL) (Lu et al., 2023a): This benchmark is a visual input version of the D4RL benchmark
(Fu et al., 2021) and focuses on continuous control tasks with visual inputs. It features varying levels of visual
distractions (easy, medium, hard) and is designed to assess generalization in continuous action spaces.

• Offline Procgen (Mediratta et al., 2024): This is an offline version of Procgen benchmark Cobbe et al. (2020)
procedurally generated games that targets discrete control tasks. It tests zero-shot generalization to entirely
unseen levels.

These offline RL benchmarks were chosen to comprehensively evaluate our method’s performance across diverse
environments, including both continuous and discrete action spaces, as well as its ability to generalize in the presence

4
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Figure 3: Sample screenshots from the V-D4RL (left) and Procgen (right) datasets, showing the training environments
and testing environments.

of visual distractions and to completely novel scenarios. Figure 3 illustrates sample observations from the V-D4RL
and Procgen datasets, highlighting the visual diversity and complexity across training and testing environments.

For our experiments, we generated different dataset variants to evaluate the effectiveness of our method. We used a
Baseline dataset without augmentation or upsampling, which was originally provided by both benchmarks; an Up-
sampled dataset where the original dataset was increased in size using diffusion model-based upsampling, without any
augmentation; an Augmented dataset where data augmentation techniques were applied without changing the dataset
size; and an Augmented Upsampled (Ours) dataset that combined both augmentation and upsampling. For more details
on the experimental setup, please refer to the supplementary material

4.2 IMPLEMENTATION DETAILS

For VD4RL we used the DrQ+BC (Lu et al., 2023a) algorithm, which extends DrQ-v2 (Yarats et al., 2021a), using BC
(as in TD3BC, Fujimoto & Gu (2021)). For Procgen we used Conservative Q-Learning (CQL) (Kumar et al., 2020).
The hyperparameters, network architectures, and other implementation details follow the standard settings provided
in the original benchmark papers. For completeness, we provide all hyperparameters and network architecture details
in supplementary material.

4.3 EVALUATION METRICS

4.3.1 GENERALIZATION PERFORMANCE METRIC

To quantify our model’s ability to generalize to unseen environments with visual distractions, we analyze
the Generalization Performance (Gperf) , defined as

:::::
adopt

::
a
::::::::::::

generalization
::::::::::::

performance
::::::
metric

::::::::
inspired

:::
by

::
the

:::::::::::::
normalization

:::::::::
approach

:::::::::
commonly

:::::
used

:::
in

:::::::::::::
reinforcement

::::::::
learning

:::::
(RL)

:::::::
studies,

:::::
such

:::
as

::::
the

::::::::
Procgen

:::::::::
benchmark

::::::::::::::::
Cobbe et al. (2020)

:::::
which

::::::
defines

:::
the

::::::::::
normalized

:::::
return

:::::::
(Rnorm)

::
as:

Gperf =
Ttest −Btest

Btrain −Btest

Rnorm =
R−Rmin

Rmax −Rmin
,

::::::::::::::::::

(7)

where Ttest is the mean test return of our method across five random seeds, and Btest and Btrain are the baseline’s mean
test and training returns, respectively, also calculated over five random seeds. The numerator (Ttest −Btest) represents
the improvement our method achieves over the baseline on the test set, while the denominator (Btrain −Btest) signifies
the

:
R
::
is

:::
the

::::::
agent’s

:::::::::::
performance,

::::
Rmin:::::::::

represents
:::
the

:::::
lowest

:::::::
possible

:::::
score

::::
(e.g.,

:::
the

:
baseline’s generalization gap—the

drop in performancefrom training to testing. Therefore, Gperf measures
::
test

::::::::::::
performance),

::::
and

::::
Rmax::::::::::

corresponds
::
to

:::
the

::::::
highest

:::::::
possible

:::::
score.

::::::::
Inspired

::
by

::::
this

::::::::::
formulation,

:::
we

::::::
define

:::
our

:::::::::::::
Generalization

::::::::::
Performance

::
as the proportion of

the baseline’s generalization gap that our method closes. A higher Gperf indicates better generalization, with Gperf = 1
meaning our methodfully closes the

::::::::::
Specifically,

:::
we

::::::::
calculate

:
it
:::

by
:::::::::
subtracting

::::
the

::::::::
baseline’s

:::::
mean

:::
test

::::::
return

:::::
(Btest)
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::::
from

:::
our

::::::::
method’s

:::::
mean

:::
test

::::::
return

:::::
(Ttest),::::

then
:::::::
dividing

:::
by

:::
the

::::::::
difference

::::::::
between

:::
the baseline’s generalization gap.

::::
mean

:::::::
training

::::::
return

::::::
(Btrain)

:::
and

:::::
Btest.:::::::::::::

Generalization
::::::::::
performance

:::::
value

:::
of

:
1
::::::::
indicates

::::
that

:::
our

::::::
method

::::::::::
completely

::::::::
eliminates

:::
the

::::
gap,

::::::::
providing

::
a

::::
clear

:::::::::
benchmark

:::
for

:::::::::::
comparison.

4.3.2 LATENT SPACE DISTRIBUTION ANALYSIS

To gain deeper insights into the impact of our method on learned representations, we performed a latent space distribu-
tion analysis using the Jensen-Shannon (JS) divergence (Menéndez et al., 1997). For each dataset variant, we extracted
latent space representations by passing both training and testing observations (collected during the evaluation steps,
as detailed in supplementary material through the trained encoder fξ and the actor-critic networks. Let htrain and htest
represent the sets of latent representations for training and testing observations, respectively. For each environment,
we estimated probability distributions over the latent space dimensions using kernel density estimation (KDE) to non-
parametrically capture the distributions of htrain and htest. We then computed the JS divergence between the training
and testing distributions for each dimension, resulting in a divergence vector d = [d1, d2, . . . , dn], where n repre-
sents the dimensionality of the latent space. The mean JS divergence d̄ across all dimensions was used to summarize
how closely the training and testing distributions aligned, with lower divergence indicating better generalization. To
facilitate comparison across different environments, we normalized the mean JS divergence values within each en-
vironment, ensuring consistency in scale. A closer match between training and test distributions suggests improved
generalization performance by our method.

5 EXPERIMENTAL RESULTS AND DISCUSSION

5.1 V-D4RL BENCHMARK RESULTS

Figure 4: (a) Generalization performance averaged across all difficulty levels (easy, medium, hard) for different envi-
ronments. (b) Normalized JS divergence values for each environment which normalized relative to that environment.
Lower values (lighter colors) indicate a closer alignment between the distributions of training and test data, suggesting
better generalization.

As seen in Figure 4, models trained on the Baseline and Upsampled datasets showed minimal improvement in the gen-
eralization gap across all environments (cheetah-run, walker-walk, and humanoid-walk), suggesting that upsampling
alone does not significantly improve generalization. The baseline consistently shows a generalization gap of 0 because
the results are normalized over it, and thus its results are not explicitly shown. In contrast, the Augmented model

6
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demonstrated a substantial reduction in the generalization gap, highlighting the importance of data augmentation in
improving robustness against unseen visual perturbations. The best results were achieved with the Augmented Up-
sampled (Ours) dataset, where combining data augmentation with upsampling further improved generalization across
all environments. The JS Divergence analysis similarly showed that the Ours dataset achieved the lowest divergence,
indicating a closer alignment between the training and testing distributions in the latent space. This further supports
that combining augmentation with upsampling leads to a more consistent latent representation and, consequently,
better generalization. These findings align with the generalization gap and return values in Table 1.

Table 1: Performance evaluation on the V-D4RL benchmark across different datasets and environments, trained using
the DrQ+BC algorithm. All return values are based on the mean over five random seeds.

Environment Method Original Easy Medium Hard Test Mean

cheetah-run

Baseline 250.1± 10.9 4.2± 1.3 3.1± 0.6 3.3± 0.8 3.53± 0.9
Upsampled 315.2± 20.1 4.6± 0.7 3.5± 0.3 4.1± 0.9 4.06± 0.7
Augmented 350.5± 15.5 81.2± 8.1 60.7± 6.2 41.3± 3.4 61.1± 5.9
Ours 360.2± 10.1 86.1± 7.1 71.2± 6.0 54.4± 2.4 70.6± 5.2

walker-walk

Baseline 570.2± 6.7 35.4± 2.4 31.6± 3.3 29.9± 2.2 32.3± 0.9
Upsampled 665.2± 7.2 32.4± 1.4 30.3± 2.7 28.9± 1.8 30.5± 2.0
Augmented 799.5± 10.5 131.5± 10.1 75.1± 5.2 50.5± 1.4 85.7± 5.6
Ours 845.9± 6.1 141.1± 12.1 92.3± 2.3 65.7± 1.6 99.7± 5.3

humanoid-walk

Baseline 15.4± 2.1 1.3± 0.2 1.0± 0.3 1.1± 0.2 1.1± 0.2
Upsampled 20.4± 2.3 1.3± 0.3 1.3± 0.4 1.1± 0.1 1.2± 0.3
Augmented 25.4± 2.7 1.6± 0.5 1.5± 0.3 1.2± 0.1 1.4± 0.3
Ours 28.5± 1.4 2.4± 0.2 2.3± 0.1 1.7± 0.2 2.2± 0.2

The results indicate that data augmentation improves generalization amidst visual distractions. Our approach achieves
notable generalization performance in zero-shot testing circumstances.

5.1.1 LEVERAGING FIXED DISTRACTING DATA FOR IMPROVED GENERALIZATION

Building on our findings from the V-D4RL benchmark, where our two-stage approach of augmentation and upsampling
significantly improved generalization, we further tested the robustness of our method. Although previous research
(Lu et al., 2023a) indicated that training with fixed distracting datasets—containing handcrafted distractions—offered
minimal benefits for generalization , we hypothesized that our method could effectively leverage even a small portion
of such data. To test this, we incorporated 5% of the fixed distracting data into our training dataset, combining it
with 95% of the original baseline data to create a composite dataset for baseline. We then applied our augmentation
and upsampled tecnic

::::::::
technique, we called Ours Fixed Data Distraction (FDD). For more details on the experimental

setup, please refer to the supplementary material.

Figure 5: (a) Generalization performance averaged over all difficulty levels, and (b) comparison of normalized JS
divergence values for cheetah-run expert dataset.
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As illustrated in Figure 5, including just 5% of the fixed distracting data improved generalization performance across
all test environments, further narrowing the generalization gap. The latent space distributions also aligned more
closely with the test data, as evidenced by reduced JS divergence values. Notably, we saw significant improvements,
especially on medium and hard difficulty levels, when this fixed distracting data was combined with our augmentation
and upsampling techniques.(Table 2).

Table 2: Performance on the cheetah-run expert dataset with and without incorporating 5% fixed distracting data
(FDD). Results are based on the mean of five random seeds.

Environment Method Original Easy Medium Hard Test Mean

cheetah-run

Baseline 250.1± 10.9 4.2± 1.3 3.1± 0.6 3.3± 0.8 3.53± 0.9
Upsampled 315.2± 20.1 4.6± 0.7 3.5± 0.3 4.1± 0.9 4.06± 0.7
Augmented 350.5± 15.5 81.2± 8.1 60.7± 6.2 41.3± 3.4 61.1± 5.9
Ours 360.2± 10.1 86.1± 7.1 71.2± 6.0 54.4± 2.4 70.6± 5.2
Ours (FDD) 267.9± 7.2 103.4± 5.3 85.4± 5.0 59.8± 3.4 82.8± 4.6

::::::::::
Environment

::::::
Method

::::
(Test

:::::
Mean)

:
/
:::::
Train

::::
Train

:
-
::::
(Test

::::::
Mean)

cheetah-run
::::::
Baseline

::::
0.01

::::
246.6

:

::::::::
Upsampled

::::
0.01

::::
311.1

:

::::::::
Augmented

: ::::
0.17

::::
289.4

:

::::
Ours

::::
0.20

::::
289.6

:

::::
Ours

:::::
(FDD)

::::
0.31

::::
185.1

:

Our approach effectively utilizes this data to add diversity and improve robustness to unseen distractions, leading to
an intriguing question:

Could incorporating a small, strategically chosen subset of data that closely aligns with the evaluation distribu-
tion—when combined with augmentation and upsampling techniques—offer a viable strategy to improve generaliza-
tion in few-shot learning scenarios?

5.2 RESULTS ON PROCGEN BENCHMARK

Our results on the Offline Procgen Benchmark further validate the generalization capabilities of our method, demon-
strating its effectiveness not only in continuous control environments like V-D4RL but also in discrete control tasks.
Figure 6 illustrates the generalization performance across three different environments across datasets.

Table 3: Performance of the CQL algorithm on the Procgen Benchmark, based on the mean over five random seeds.

Environment Method Train Return Test Return

Coinrun

Baseline 8.51± 0.27 7.17± 0.27
Upsampled 8.96± 0.32 7.37± 0.37
Augmented 8.65± 0.31 7.50± 0.54
Ours 8.74± 0.34 8.02± 0.44

Ninja

Baseline 5.94± 0.23 4.41± 0.21
Upsampled 6.18± 0.39 4.52± 0.41
Augmented 5.83± 0.31 4.75± 0.35
Ours 6.05± 0.27 4.82± 0.27

Jumper

Baseline 7.62± 0.19 4.23± 0.24
Upsampled 7.94± 0.32 4.36± 0.28
Augmented 7.55± 0.28 4.51± 0.19
Ours 7.35± 0.24 4.72± 0.22

::::::::::
Environment

::::::
Method

:::
Test

:
/
:::::
Train

::::
Train

:
-
::::
Test

Procgen Averaged
::::::
Baseline

::::
0.72

::::
2.09

::::::::
Upsampled

::::
0.70

::::
2.28

::::::::
Augmented

: ::::
0.76

::::
1.76

::::
Ours

::::
0.79

::::
1.53

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Performance evaluation on the Procgen benchmark across three different games, trained using the CQL
algorithm. (a) Generalization performance for three games in Procgen. (b) Comparison of normalized JS divergence
values.

As shown in Table 3, applying data augmentation alone to the baseline dataset led to marginal improvements. How-
ever, our proposed method—creating augmented and upsampled dataset—yielded the most significant improvements
across all three games. These results underscore the effectiveness of our solution, confirming its ability to improve
generalization performance in discrete control tasks like Procgen, in line with the gains observed in the V-D4RL con-
tinuous control benchmark. Thus, our method demonstrates its effectiveness not only in continuous control tasks but
also in discrete control environments. While the improvements in Procgen are consistent with the trends observed in
V-D4RL, they validate the generalization capabilities of our solution across a broader range of offline RL challenges.
It is important to note that Mediratta et al. (Mediratta et al., 2024) provided an offline Procgen dataset collected from
only 200 levels, limiting our ability to compare the effects of increasing the number of levels on generalization perfor-
mance relative to our method. Despite this limitation, our results demonstrate that without expanding the dataset’s level
diversity, our approach significantly amplifies generalization performance. This suggests that our method effectively
compensates for the limited number of levels through data augmentation and upsampling alone.

6 RELATED WORK

Generalization in RL has been extensively studied, primarily in the context of online RL. A substantial body of work
has focused on training agents to generalize across novel transition dynamics and reward functions (Rajeswaran et al.,
2018; Machado et al., 2017; Packer et al., 2019; Cobbe et al., 2020; Kirk et al., 2023; Justesen et al., 2018; Nichol et al.,
2018; Küttler et al., 2020; Bengio et al., 2020; Bertran et al., 2020; Ghosh et al., 2021; Lyu et al., 2024; Ehrenberg
et al., 2022; Lyle et al., 2022; Dunion et al., 2023; Almuzairee et al., 2024). RL environments such as Procgen (Cobbe
et al., 2020) and the NetHack Learning Environment (Kumar et al., 2020) have been specifically developed to assess
generalization in online RL. However, these studies largely focus on interactive settings where agents can gather new
data during training, leaving generalization in offline RL relatively unexplored.

Visual offline RL introduces additional challenges, particularly when using large-scale datasets. Datasets like Atari,
StarCraft, and MineRL contain millions of samples but require significant computational resources, limiting their
accessibility to many researchers (Agarwal et al., 2020; Vinyals et al., 2017; Fan et al., 2022). In contrast, benchmarks
such as V-D4RL and offline Procgen (Lu et al., 2023a; Mediratta et al., 2024) offer more accessible alternatives,
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with 100,000 and 1 million samples per environment, respectively, while still supporting meaningful evaluation of
generalization in continuous and discrete control tasks. Both benchmarks highlight the generalization challenges in
offline RL, especially with model-free methods. Our work extends these efforts by evaluating generalization across
diverse, procedurally generated environments in both continuous and discrete control tasks.

Data augmentation in RL has been widely successful in improving generaliza-
tion in online RL methods (Yarats et al., 2021b;a; Laskin et al., 2020; Raileanu et al., 2021)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Yarats et al., 2021b;a; Raileanu et al., 2021; Laskin et al., 2020; Ma et al., 2024), but its application in offline RL
remains underexplored. Our work leverages augmentation to address generalization in offline settings, demonstrating
its potential for visual tasks.

::::::
Unlike

::::::::
methods

::::
such

::
as

::::::
DrAC

:::::::::::::::::::
(Raileanu et al., 2021)

:::
and

::::::
SVEA

:::::::::::::::::
(Hansen et al., 2021)

:
,
:::::
which

:::::::
involve

:::::::::
algorithmic

::::::::
changes

::
in

:::::
online

::::
RL

:::::::
settings,

:::
our

::::::::
approach

:::::::
focuses

::
on

::::::::::::::
non-algorithmic

::::::::::::
enhancements

::::
using

:::::::
simple

::::::
visual

::::::::::::::
augmentations,

:::
as

::::::::::::
demonstrated

:::
by

::::::::::::::::::
(Laskin et al., 2020)

::::::::
combined

:::::
with

::::::::::::::
diffusion-based

::::::::::
upsampling.

::::
This

:::::::::::
combination

::::::::
improves

:::
data

::::::::
diversity

:::
and

:::::::::::::
generalization,

::::::::
providing

:
a
::::::::
scalable,

:::::::
practical

:::::::
solution

:::
for

:::::
offline

:::
RL

:::::::
settings.

Diffusion models have emerged as a promising tool for improving RL solutions, though they have primarily been
used as policies or planners rather than as data synthesizers (Zhu et al., 2024; Jackson et al., 2024). Recent works,
such as ROSIE (Yu et al., 2023) and GenAug (Chen et al., 2023), have employed diffusion models for synthetic data
generation to improve generalization. However, these methods operate in online robotic learning contexts, relying on
continuous interaction with the environment. In contrast, our approach applies diffusion-based upsampling in offline
RL, where additional interaction with the environment is not possible. Inspired by SynthER (Lu et al., 2023b), our
method improves data diversity through upsampling, making it the first diffusion model-based data synthesis aimed
at solving the generalization problem in model-free offline RL with visual inputs, across both continuous and discrete
control tasks.

7 CONCLUSION

We presented a practical two-step approach that improves generalization in offline reinforcement learning from visual
inputs. By combining targeted data augmentation with diffusion model-based synthetic data generation in the latent
space, our approach increases training data diversity without significant computational overhead, allowing model-
free offline RL algorithms to better handle risk-averse behavior in unseen environments. Our experiments on the
V-D4RL benchmark (continuous control) and Procgen benchmark (discrete control) demonstrate that our approach
consistently reduces the generalization gap and improves performance in unseen environments. Additionally, our
method effectively leverages small amounts of hand-crafted, fixed distracting data to further improve generalization,
suggesting potential applications for few-shot learning in offline RL. These benchmarks challenge the development
of better offline RL algorithms for visual observations, and to our knowledge, we are the first to apply this approach
across both continuous and discrete action spaces. By broadening the data distribution in both pixel and latent spaces,
we provide a scalable two-step solution to the generalization challenges in offline RL.

While our method shows significant improvements, there are certain limitations. Although working in the latent space
keeps computational overhead relatively low, extending this approach to the pixel space would introduce significantly
higher costs, especially in environments with high-resolution visual inputs. Additionally, our method required exten-
sive experimentation to identify the best settings for data augmentation and diffusion model parameters, which may
limit its immediate applicability to more complex environments like robotics or autonomous driving. We opted for
model-free algorithms in this work due to their sampling efficiency and lower computational load. However, these
algorithms may face limitations in handling more complex tasks, particularly those requiring long-horizon planning.
Future work will focus on scaling this approach to such environments and exploring its integration with various RL
algorithms, including model-based ones, to improve generalization in offline RL settings.
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ization in deep reinforcement learning. 2019. URL https://arxiv.org/abs/1810.12282.

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement learning. 2021.
URL https://arxiv.org/abs/2102.10330.

Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic data augmentation for
generalization in deep reinforcement learning. 2021. URL https://arxiv.org/abs/2006.12862.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel Todorov, and Sergey
Levine. Learning complex dexterous manipulation with deep reinforcement learning and demonstrations. 2018.
URL https://arxiv.org/abs/1709.10087.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. https://huggingface.co/CompVis/
stable-diffusion-v-1-4-original.

Adish Singla, Anna N. Rafferty, Goran Radanovic, and Neil T. Heffernan. Reinforcement learning for education:
Opportunities and challenges. 2021. URL https://arxiv.org/abs/2107.08828.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational overfitting in reinforce-
ment learning. 2019. URL https://arxiv.org/abs/1912.02975.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/book/the-book-2nd.html.

12

https://www.jmir.org/2020/7/e18477
https://arxiv.org/abs/2206.02126
https://arxiv.org/abs/2402.02701
https://arxiv.org/abs/2210.04561
https://arxiv.org/abs/1709.06009
https://www.sciencedirect.com/science/article/pii/S0016003296000634
https://arxiv.org/abs/1804.03720
https://arxiv.org/abs/1810.12282
https://arxiv.org/abs/2102.10330
https://arxiv.org/abs/2006.12862
https://arxiv.org/abs/1709.10087
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
https://arxiv.org/abs/2107.08828
https://arxiv.org/abs/1912.02975
http://incompleteideas.net/book/the-book-2nd.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo, Alireza
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